
Eur. Phys. J. B 57, 423–428 (2007)
DOI: 10.1140/epjb/e2007-00189-0 THE EUROPEAN

PHYSICAL JOURNAL B

Enhancing synchronizability by weight randomization
on regular networks

D.Q. Li1, M.H. Li1, J.S. Wu2, Z.R. Di1, and Y. Fan1,a

1 Department of Systems Science, School of Management, Beijing Normal University, Beijing 100875, P.R. China
2 Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. Canada, V6T 1Z1, Canada

Received 22 October 2006 / Received in final form 29 January 2007
Published online 13 July 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. In weighted networks, redistribution of link weights can effectively change the properties of
networks, even though the corresponding binary topology remains unchanged. In this paper, the effects
of weight randomization on synchronization of coupled chaotic maps is investigated on regular weighted
networks. The results reveal that synchronizability is enhanced by redistributing of link weights, i.e. cou-
pled maps reach complete synchronization with lower cost. Furthermore, we show numerically that the
heterogeneity of link weights could improve the complete synchronization on regular weighted networks.

PACS. 89.75.Hc Networks and genealogical trees – 05.45.-a Nonlinear dynamics and chaos – 05.45.Xt
Synchronization; coupled oscillators

1 Introduction

In recent decades, the significance of the concept of col-
lective and self-organized behavior such as synchroniza-
tion [1] has been realized in many different subjects. Re-
cently, as the explosion of studies of complex networks
[2–5], the part of synchronization of complex networks

has provided a fresh framework for research on collective
phenomena arising in many fields, such as biology, chem-
istry and sociology. Previous works about the synchro-
nization of complex networks focused on the influence of
topological connections on synchronization. Compared to
regular networks, the ability to synchronize is generally
enhanced in both small-world networks (SWNs) [6,7] and
scale-free networks (SFNs) [5]. These results imply that
synchronizability strongly depends on the average path
length between oscillators. Further study indicates that
the heterogenerous degree distribution decreases synchro-
nizability [8]. Besides the continuous chaotic dynamics
mentioned above, the synchronization of coupled chaotic
maps has been fully studied in a variety of networks, in-
cluding regular networks, scale-free networks, small-world
networks, tree networks, and random networks [9].

However, synchronization, as many other dynamic pro-
cesses in networks, is influenced not only by the topol-
ogy, but also by the link weights of the network. In
some studies, synchronizability is enhanced in different
kinds of networks by choosing link weights based on the
knowledge of the network topology [10–12]. These in-
vestigations are significant because most complex net-
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works, which are relevant to synchronization, are indeed
weighted, and link weights display highly heterogeneous,
such as brain networks that allows coherent oscillation
of excitable neurons [13], airport networks that under-
lie the synchronization of epidemic outbreaks in different
cities [14] and technological networks whose functioning
rely on the synchronization of interacting units [15]. Pre-
vious works have attempted some methods to investigate
the influence of link weights on synchronization. Atterna-
tively, redistributing of link weights provides another way
to adjust properties of weighted network [18]. In this pa-
per, we study the effect of redistributing link weights on
network synchronizability, and find it increasing on regu-
lar networks with randomizing link weights.

Some fundamental problems in the context of com-
plete synchronization of identical oscillators are discussed
in references [16,17]. In this paper, a similar approach is
used to study the synchronization of Logistic maps. Re-
distribution of link weights can produce a “Small-World”
effect, similar to that of rewiring links on a regular net-
work [18]. For chaotic oscillators on a weighted lattice,
the synchronizability of systems is reinforced after redis-
tributing the link weights. Randomization of link weights
could reduce the critical coupling strength for complete
synchronization, allowing the system to reach complete
synchronization at lower cost. Using a uniform random
distribution of link weights, we also provide an illustration
that synchronizability could be enhanced by increasing the
heterogeneity of link weights.

The paper is organized as follows. In Section 2, we
introduce the method of redistributing link weights of



424 The European Physical Journal B

networks and show the Small-World effect produced by
this procedure. The method of evaluating the ability to
completely synchronize in weighted networks is formulated
and analyzed in Section 3. In Section 4, we demonstrate
that the synchronizability is enhanced with redistributing
link weights. The heterogeneity of weight could make sys-
tems more synchronizable. The conclusions are presented
in the last section.

2 Redistribution of link weights

Similar to the construction of Watts-Strogatz (WS) small-
world networks [4], we redistribute link weights instead of
rewiring links. The initial setup is a ring lattice with N
vertices, k edges per vertex, each edge having the same
dissimilarity weight w [18]. Here, we assume there is a
minimum unit of weight, ∆w. Starting from this original
network, the procedure of redistributing link weights is as
follows:

1. every unit of weight ∆w in the original lattice is re-
moved from the original link with probability P and
transferred to a link randomly chosen over the whole
lattice;

2. step 1 is repeated until each ∆w in the original lattice
has been tried once, except for the reallocated units of
weight;

3. if the unit of weight ∆w is the only unit of weight
left on that link, it will not be attempted. This could
avoid disconnecting a link in order to ensure the same
corresponding binary network.

Through above procedure, without changing the binary
structure, a regular network is adjusted to a new state
with random weight distribution (P = 1) from that with
δ weight distribution (P = 0). Through investigation of
the intermediate region 0 < P < 1, we can determine the
effect of weight redistribution.

The link weight distribution after applying the above
procedure can be determined by the following arguments.
T = Nk/2 is the total number of links in the network. Let
Wr denote the total number of units of minimum weight
∆w removed from the original link, thus Wr = wTP/∆w.
After redistribution of link weights, each link has weight
wi = si∆w, where si is the number of ∆w on link i. The
average of si is equal to w/∆w. Obviously, given ∆w, the
distribution of link weights is determined by the distribu-
tion of s. In this case, s can be divided into two parts:
s1 is the number of ∆w left on links when the others are
removed from this link; s2 is the number of ∆w trans-
ferred to other links. Thus s = s1 + s2. The probability
distributions of s1 and s2 are respectively:

P (s1) = Cs1
w/∆w(1 − P )s1Pw/∆w−s1 , (1)

P (s2) = Cs2
Wr

(1/T )s2(1 − 1/T )Wr−s2

=
e−λλs2

s2!
, (2)

Fig. 1. (a) The distribution of s. (b) The variance of link
weights. The line s shows the theoretical result given by equa-
tions (3) and (4), while the dots are the results of numerical
simulation. (N = 300, k = 120, w = 10, ∆w = 1. The dots are
averaged over 20 realizations of randomization processes.)

where λ = Wr

T = pw
∆w for large N . Combining these two

parts, the distribution of s is as follows:

P (s) =
f(∆w,s)∑

n=0

Cn
w/∆w(1−P )nP (w/∆w)−n e−λλ(s−n)

(s − n)!
, (3)

where f(∆w, s) = min{w/∆w, s} .
For wi = ∆wsi, the distribution of weight randomized

is the same as the distribution of s, which is the number of
∆w that each link has finally. The shape of s distribution is
similar to the degree distribution of the WS Small-World
Model. It has a pronounced peak at 〈s〉 = w/∆w and
decays exponentially for large s in Figure 1a. The variance
of link weights wi after redistribution is

D(wi) = w∆wp(2 − P ). (4)

From Figure 1b, we can conclude that the heterogeneity
of weight increases with P .

The above procedure of weight randomization could
obviously change the structural properties of networks,
such as the average weighted path length and the weighted
clustering coefficient. After redistributing the dissimilar-
ity weight over the whole network, the weighted distance
of a path can easily be calculated from the sum of dissim-
ilarity weight for any given path. The weighted clustering
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Fig. 2. The change of average weighted shortest path
length L(P )/L(0) and average weighted clustering coefficient
C(P )/C(0) as a function of P . The results are averaged over
20 random realizations of the redistribution processes (N =
300, w = 10, ∆w = 1).

coefficient is calculated according to formulae initially pro-
posed by Holme [19] and Onnela [20], and generalized as
follows [18]:

Cw
H(i) =

∑
j,k w̃ijw̃jkw̃ki∑

j,k w̃ijw̃ki
(5)

and
Cw

O(i) =
2

ki(ki − 1)

∑

j,k

(w̃ijw̃jkw̃ki)1/3, (6)

where w̃ij = 1
wij

denotes similarity weight. Similar to
the WS small-world network, the average weighted path
length L(P ) and the weighted clustering coefficient C(P )
are used to present the structural properties of the net-
work. Figure 2 shows that with redistributing link weights,
the average path length is obviously decreased, while the
clustering coefficient is increased. It demonstrates that be-
sides random rewiring of links, randomizing weight will
also lead to small-world phenomenon [18].

3 Synchronizability of chaotic maps
in the network

In this section, we introduce a weighted model of coupled
chaotic maps in regular networks. We then briefly present
an evaluation for linear stability of completely synchro-
nized states in terms of the eigenvalues of the coupling
matrix and the Lyapunov exponent of the chaotic map.

The dynamics of a vertex in weighted network is de-
scribed via:

xi(t + 1) = f(xi(t)) +
γ

m

m∑

j �=i

Jij(f(xj(t)) − f(xi(t))) (7)

where xi(t) is a state variable and t denotes the discrete
time. f(x) describes the local dynamics, and is chosen

using the logistic map f(x) = αx(1−x) with α = 3.9. γ is
the overall coupling strength. Here we take the coupling
of the nearest and next nearest neighbors, so m is the
number of nearest-neighbors and next nearest-neighbors
of any vertex. Given the dissimilarity weight wij between
any two vertices i and j connected directly, the interaction
strength is inversely proportional to the distance between
any two vertices. We use the link-preferential interaction
as follows: Jij is taken as 1/wij if i and j are connected
directly (even though they may also be connected through
a third vertex s), is taken as 1/min(wis+wsj) if i and j are
next nearest-neighbors and is set to 0 for other cases [18].

Next, we present the stability analysis of synchronized
states in regular networks. Within a matrix formalism, the
formula (7) can be written as:

X(t + 1) = BF (X(t)) (8)

where Bij = [δij(1 − γ
m

∑m
j �=i Jij) + γJij

m ] with X(t +
1) = [x1(t + 1), x2(t + 1), . . . , xn(t + 1)]T and F (X(t)) =
[f(x1(t)), f(x2(t)), . . . , f(xn(t))]T . Here B is the coupling
matrix combining both topology and weight. The rows of
B have the same sum, which ensures that the completely
synchronized state {x1 = x2 = . . . = xn} is an invariant
manifold of Equation (8). The only eigenmode that corre-
sponds to the uniform state is [1, 1, . . . , 1]. The Jacobian
matrix of the synchronized state Jt is directly related to
the coupling matrix B by Jt = BF ′(X(t)).

Let λ0 be the eigenvalue corresponding to the eigen-
mode [1, 1, . . . , 1] and let λi(i = 1, 2, . . . , N − 1) represent
the other N−1 eigenvalues of the coupling matrix, ordered
such that | λ1 |≥| λ2 |≥ . . . ≥| λN−1 |. Let λ represent
the Lyapunov exponent of the map f . The stability of
this state depends on the eigenvalues of coupling matrix
and Lyapunov exponent λ. In terms of eigenvalues of the
coupling matrix, Lyapunov exponents λ can be written as:

LEi = limt→∞ 1
t ln

∏
t |λif

′(xi(t))|
= ln |λie

λ|. (9)

The necessary condition for the stability of synchronous
chaos is that only one eigenvalue fulfils |λ0e

λ| > 1 and
other eigenvalues fulfil |λie

λ| < 1 (i = 1, 2, . . . , N − 1). In
fact, (ln|λ1|+λ) < 0 ensures |λie

λ| < 1 (i = 1, 2, . . . , N −
1). So the smaller |λ1| is, the more synchronizable the
system is, and vice versa. As a result, we can measure the
synchronizability of the system by calculating eigenvalues
of the coupling matrix B.

Besides the stability of synchronization given by the
eigenvalue, the efficiency of synchronization is also of great
importance. To assess efficiency for synchronization of os-
cillators on weighted networks, we examine the minimal
cost C needed to achieve complete synchronization [10].
The cost C is defined as C = γmin

∑
i

∑
j Jij , where γmin

is the minimum overall coupling strength that the syn-
chronization requires. It can be used as a complementary
measure of synchronizability. Obviously, it is more efficient
when the oscillators are synchronized with lower cost C.

In the next section, we will apply these two approaches
to study the synchronization ability of regular networks
before and after redistributing link weights.
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Fig. 3. (a) Eigenvalue |λ1| as a function of probability of ran-
domization with coupling strength γ = 6.5. Curve S is the
threshold for the stability of the synchronized state. (N =
300, k = 120). (b) Degre of synchronization as a function of
probability of randomization with the same parameters. The
threshold for stability is the same probability as the threshold
for D = 0. Removing the relaxation time t < 500, we calculate
D when 500 < t < 2000 for approximation.

4 Effect of weight redistribution
on synchronizability

As mentioned in the introduction, the topology of small-
world networks can enhance their ability to synchronize.
Here we investigate the “Small-World” effect induced by
weight randomization on synchronization. We find that re-
distributing link weights could enhance synchronizability
of chaotic maps on regular networks.

We start from a ring lattice with N = 300 vertices
and k = 120 edges per vertex, where each link has the
same dissimilarity weight w = 10 in the initial network.
The results are averaged over 50 random redistribution
processes. We then carry out the randomizing procedure
described in Section 2 and study its effect on the dynam-
ical process of synchronization. Since the eigenvalue |λ1|
of the coupling matrix indicate the stability of synchro-
nization, we now study the effect of redistributing link
weights on |λ1|. In Figure 3a, we find that redistribution
of link weights has continuous effect on |λ1|. It can be
clearly observed that the stability of synchronous states
is reinforced by randomizing link weights. Our numerical

Fig. 4. (a) Eigenvalue |λ1| as a function of coupling strength
γ with p = 0 and p = 1 respectively. (b) Degree of synchro-
nization as a function of coupling strength γ with p = 0 and
p = 1.

computations show that |λ1| decreases with increasing P
and approaches as a minimum at around P = 0.78, sim-
ilar to the behavior of the average path length as shown
in Figure 2. This implies that synchronizability increases
with decreasing average path length. In addition, we in-
vestigated the effect of overall coupling strength γ on |λ1|
at different weight distributions. Figure 4a indicates that
|λ1| decreases at almost every value of γ on account of
randomization of link weights. The slope of the curve for
P = 1 is steeper than that of the curve for P = 0. In ad-
dition, when γ is larger than 6, the curve for P = 0.78 is
under the curve for P = 1, indicating again that |λ1| has a
minimum at around P = 0.78. This implies that the more
heterogeneous the link weights distribution is, the lower
γ the synchronization state of the oscillators on the net-
work requires. The reason may be that redistributing link
weights can decrease the average path length. Therefore,
the network gets “smaller” and more synchronizable.

Furthermore, the cost C is reduced when the link
weights is randomized (as shown in Fig. 5). This is inter-
esting because the minimal cost and the maximum syn-
chronizability occur correspondingly with increasing P .
We not only enhance the synchronizability but also de-
crease the cost, which is one of the most important ingre-
dients in realistic networks. In addition, since the speed
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Fig. 5. Cost as a function of probability of randomization. The
inset is the relaxation time as a function of coupling strength
γ at P = 0 and p = 1.

Fig. 6. Eigenvalue |λ1| as a function of probability of random-
ization with coupling strength γ = 6.5 (N = 300, k = 30). The
inset shows eigenvalue |λ1| as a function of coupling strength
γ. The error bars indicate the standard deviation of results.

to reach synchronization can only be estimated from the
onset of synchronization, it is calculated within the range
where complete synchronization could be achieved. The
relaxation time for synchronization is shortened after ran-
domizing link weights (as shown in the inset of Fig. 5).

For a sparse network (with small k), although the sys-
tem cannot reach complete synchronization (as shown in
Fig. 6), the decreasing |λ1| with randomization probabil-
ity in regular networks is qualitatively similar to the above
results. The decrease of average path length is smaller in
sparse networks than in dense networks [18], so the change
of |λ1| is small. Compared with the error, the decrease of
|λ1| is much more significant. This implies that hetero-
geneous weight distribution can enhance the synchroniz-
ability regardless of the density of the regular network. Of
course, with increasing density, the effect of weight ran-
domization on synchronizability grows more obvious.

Besides studying linear stability of the synchronization
states by investigating |λ1|, we use the degree of synchro-
nization (D = limt→∞ 1

t

∑
t

∑
i |xi(t) − xt|) to study how

much and under what conditions they converge toward a
coherent state. In the simulation process, the degree of
synchronization (D) is estimated after eliminating a cer-
tain relaxation time, and then averaging over the following
1500 time steps. Clearly the complete synchronization ap-
pears if and only if the degree of synchronization (D) is
zero within computer numerical precision, i.e. D ∼ 10−14.
This procedure not only reveals the existence of stable so-
lutions, but also gives a rough measure of its attracting
basin. Figure 3b indicates that the degree of synchroniza-
tion reaches zero at P � 0.4, while the synchronization
states become stable at γ = 6.5 in Figure 3a. This may im-
ply that the system has only one synchronization attrac-
tor in the phase space. We could find a sharp transition
to coherence, and a robustness to initial configurations,
since for each overall coupling strength γ, all the final
configurations have approximately the same degree of syn-
chronization. In particular, when exceeding the threshold
around P � 0.4, all initial configurations converge toward
a coherent state, indicating that in this parameter region
the attracting basin of coherent states fills almost the en-
tire phase space. This conclusion is confirmed in Figure 4.
Figure 4b shows the curves of D as a function of coupling
strength γ before and after redistribution of link weights.
We can observe that D becomes synchronized at lower
γ with a heterogeneous weight distribution when P = 1
from 50 different initial configurations. Similarly, compar-
ing with Figure 4a, we can see that once the synchroniza-
tion states are stable, the system becomes synchronized
immediately. Further detailed studies about the basin of
attractor in the phase space need to be performed.

From the above results, we believe that redistribution
of weight could enhance the synchronizability of oscilla-
tors on the lattice. Meanwhile, we notice that heterogene-
ity is also increased by randomization of the weight. We
therefore changed the technique for redistributing weight
in order to check the role of link weights in the synchro-
nization of oscillators on the lattice.

We distribute the link weights with a uniform dis-
tribution in [10 − θ, 10 + θ], which means the weight
average remains 10. The weight distribution becomes
more heterogeneous as θ is increased. Figure 7 displays
that with increasing coupling strength, |λ1| decreases more
rapidly with a larger θ, while the degree of synchronization
reaches zero at the smaller γ. This implies that the sys-
tem becomes increasingly synchronizable with increasing
heterogeneous weight distribution. This is consistent with
the above results that the randomization of weight can
enhance the synchronizability on regular networks. These
results suggest that another efficient way could achieve
better synchronizability on regular networks.

It should be noted that this study was performed only
on regular networks. The influence of link weights on the
synchronization with other topologies of network is un-
clear. However, these questions could be solved if we con-
sider the weight and topology together. Despite its pre-
liminary character, the study presented here can clearly
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Fig. 7. (a) Eigenvalue |λ1| as a function of coupling strength
with θ = 0 and θ = 7.5. (b) Degree of synchronization as a
function of coupling strength with θ = 0 and θ = 7.5 respec-
tively. It can also be observed that the threshold for stability
is the same probability as the threshold for both θ = 0 and
θ = 7.5.

indicate the role of heterogeneous weight distribution in
the synchronization.

5 Conclusion

Link weight, as a measure of interaction strength, is
believed to be an important variable in networks. It
gives more information about networks besides topological
properties dominated by links, and provides an additional
tool to adjust network properties. For weighted networks,
besides changing their topology by rewiring of links, re-
distribution of weight is an important way to improve the
network function. In this paper, through a simple system
of coupled Logistic maps, we have shown that random-
ization of link weights yields higher synchronizability on
regular network at smaller cost. The Lyapunov exponent
of the network is decreased with the randomization of link
weights and the system reaches complete synchronization
more easily. The reason for this may be that the average
path length is shortened as a result of heterogeneity of
link weights. The relations between oscillators are tight-
ened so that the oscillators can synchronize easily. Results

obtained by analysis of the coupling matrix were numer-
ically analyzed in coupled Logistic maps. We studied the
degree of synchronization of the system from random ini-
tial conditions. One interesting result is that the entire
phase space is almost completely filled with the attract-
ing basin of synchronous states. We also confirm that the
heterogeneity of link weights can reinforce the synchro-
nization ability for a uniform randomly redistribution of
link weights. Thus our works has mainly focused on these
effects in regular networks. The effect of redistribution of
weight on other kinds of network should be investigated.
The more interesting problem for further studies is to find
the best distribution of link weights and link-weight cor-
respondence for synchronization for a given choice of dy-
namics and network topology. This would be useful for
network design and control of synchronization.

The work is partially supported by the 985 project and NSFC
under the grant Nos. 70431002 and 70471080.
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